Home

Topienie Tyłek jakość kappa opioid inhibition of morphine and cocaine self administration in rats Macka potyczka Południowy zachód

Signaling Properties of Structurally Diverse Kappa Opioid Receptor Ligands:  Toward in Vitro Models of in Vivo Responses | ACS Chemical Neuroscience
Signaling Properties of Structurally Diverse Kappa Opioid Receptor Ligands: Toward in Vitro Models of in Vivo Responses | ACS Chemical Neuroscience

Frontiers | Crosstalk Between Kappa Opioid and Dopamine Systems in  Compulsive Behaviors
Frontiers | Crosstalk Between Kappa Opioid and Dopamine Systems in Compulsive Behaviors

Orvinols with Mixed Kappa/Mu Opioid Receptor Agonist Activity | Journal of  Medicinal Chemistry
Orvinols with Mixed Kappa/Mu Opioid Receptor Agonist Activity | Journal of Medicinal Chemistry

Fentanyl vapor self-administration model in mice to study opioid addiction  | Science Advances
Fentanyl vapor self-administration model in mice to study opioid addiction | Science Advances

Effects of the Kappa-opioid Receptor Agonist, U69593, on the Development of  Sensitization and on the Maintenance of Cocaine Self-administration |  Neuropsychopharmacology
Effects of the Kappa-opioid Receptor Agonist, U69593, on the Development of Sensitization and on the Maintenance of Cocaine Self-administration | Neuropsychopharmacology

Kappa Opioid Receptors Regulate Stress-Induced Cocaine Seeking and Synaptic  Plasticity - ScienceDirect
Kappa Opioid Receptors Regulate Stress-Induced Cocaine Seeking and Synaptic Plasticity - ScienceDirect

Frontiers | Escalated Oxycodone Self-Administration and Punishment:  Differential Expression of Opioid Receptors and Immediate Early Genes in  the Rat Dorsal Striatum and Prefrontal Cortex
Frontiers | Escalated Oxycodone Self-Administration and Punishment: Differential Expression of Opioid Receptors and Immediate Early Genes in the Rat Dorsal Striatum and Prefrontal Cortex

Self-Administered Heroin and Cocaine Combinations in the Rat: Additive  Reinforcing Effects—Supra-Additive Effects on Nucleus Accumbens  Extracellular Dopamine | Neuropsychopharmacology
Self-Administered Heroin and Cocaine Combinations in the Rat: Additive Reinforcing Effects—Supra-Additive Effects on Nucleus Accumbens Extracellular Dopamine | Neuropsychopharmacology

Molecules | Free Full-Text | Kappa Opioid Receptor Agonist Mesyl Sal B  Attenuates Behavioral Sensitization to Cocaine with Fewer Aversive  Side-Effects than Salvinorin A in Rodents | HTML
Molecules | Free Full-Text | Kappa Opioid Receptor Agonist Mesyl Sal B Attenuates Behavioral Sensitization to Cocaine with Fewer Aversive Side-Effects than Salvinorin A in Rodents | HTML

κ Opioid Receptors in the Nucleus Accumbens Shell Mediate Escalation of  Methamphetamine Intake | Journal of Neuroscience
κ Opioid Receptors in the Nucleus Accumbens Shell Mediate Escalation of Methamphetamine Intake | Journal of Neuroscience

The Role of Dynorphin and the Kappa Opioid Receptor in the Symptomatology  of Schizophrenia: A Review of the Evidence - Biological Psychiatry
The Role of Dynorphin and the Kappa Opioid Receptor in the Symptomatology of Schizophrenia: A Review of the Evidence - Biological Psychiatry

Biased agonists of the kappa opioid receptor suppress pain and itch without  causing sedation or dysphoria | Science Signaling
Biased agonists of the kappa opioid receptor suppress pain and itch without causing sedation or dysphoria | Science Signaling

Frontiers | A Review of the Therapeutic Potential of Recently Developed G  Protein-Biased Kappa Agonists
Frontiers | A Review of the Therapeutic Potential of Recently Developed G Protein-Biased Kappa Agonists

Locomotor activity: A distinctive index in morphine self-administration in  rats | PLOS ONE
Locomotor activity: A distinctive index in morphine self-administration in rats | PLOS ONE

IJMS | Free Full-Text | The Mechanisms Involved in Morphine Addiction: An  Overview | HTML
IJMS | Free Full-Text | The Mechanisms Involved in Morphine Addiction: An Overview | HTML

Kappa Opioid Receptors Regulate Stress-Induced Cocaine Seeking and Synaptic  Plasticity - ScienceDirect
Kappa Opioid Receptors Regulate Stress-Induced Cocaine Seeking and Synaptic Plasticity - ScienceDirect

Kappa Opioid Receptors Regulate Stress-Induced Cocaine Seeking and Synaptic  Plasticity - ScienceDirect
Kappa Opioid Receptors Regulate Stress-Induced Cocaine Seeking and Synaptic Plasticity - ScienceDirect

Deep brain stimulation of the nucleus accumbens shell attenuates cocaine  withdrawal but increases cocaine self-administration, cocaine-induced  locomotor activity, and GluR1/GluA1 in the central nucleus of the amygdala  in male cocaine-dependent rats -
Deep brain stimulation of the nucleus accumbens shell attenuates cocaine withdrawal but increases cocaine self-administration, cocaine-induced locomotor activity, and GluR1/GluA1 in the central nucleus of the amygdala in male cocaine-dependent rats -

Effects of Kappa Opioid Receptor Agonists on Fentanyl vs. Food Choice in  Male and Female Rats: Contingent vs. Non-Contingent Administration | bioRxiv
Effects of Kappa Opioid Receptor Agonists on Fentanyl vs. Food Choice in Male and Female Rats: Contingent vs. Non-Contingent Administration | bioRxiv

Controlling opioid receptor functional selectivity by targeting distinct  subpockets of the orthosteric site | eLife
Controlling opioid receptor functional selectivity by targeting distinct subpockets of the orthosteric site | eLife

Effects of Mixed-Action κ/μ Opioids on Cocaine Self-Administration and  Cocaine Discrimination by Rhesus Monkeys | Neuropsychopharmacology
Effects of Mixed-Action κ/μ Opioids on Cocaine Self-Administration and Cocaine Discrimination by Rhesus Monkeys | Neuropsychopharmacology

Critical Assessment of G Protein-Biased Agonism at the μ-Opioid Receptor:  Trends in Pharmacological Sciences
Critical Assessment of G Protein-Biased Agonism at the μ-Opioid Receptor: Trends in Pharmacological Sciences

Frontiers | Cebranopadol, a Mixed Opioid Agonist, Reduces Cocaine Self- administration through Nociceptin Opioid and Mu Opioid Receptors
Frontiers | Cebranopadol, a Mixed Opioid Agonist, Reduces Cocaine Self- administration through Nociceptin Opioid and Mu Opioid Receptors

Morphine self-administration (MSA) is increased in irradiated rats. (a)...  | Download Scientific Diagram
Morphine self-administration (MSA) is increased in irradiated rats. (a)... | Download Scientific Diagram

Frontiers | The Kappa Opioid Receptor: From Addiction to Depression, and  Back
Frontiers | The Kappa Opioid Receptor: From Addiction to Depression, and Back